What’s the Difference Between a Data Scientist and a Data Analyst?

By BrainStation March 27, 2019

As we’ve written about in the past, demand for data-related professionals is expected to rise by 28 percent in the next two years, with a projected 2.7 million new jobs. The 2019 BrainStation Digital Skills Survey recently took a closer look at this line of work and found that this fast-growing industry was still very much in the early stages of its development. In fact, while the aforementioned demand is typically associated with “Data Scientists,” the survey found that a majority of data respondents currently work under a different title, with “Data Analyst” and “Business Analyst” leading the list of job titles.

The question is, what’s the difference between a Data Analyst and a Data Scientist? Traditionally speaking, the difference has been rooted in professional and educational backgrounds, with the latter typically earning graduate-level, or higher, degrees. Of course, given the rate at which the world of work is changing – 74 percent of executive respondents claimed that their organizations were actively investing in digital transformation initiatives, and 89 percent claim there are elements of their products and services that did not exist five years earlier – this too may be changing.  

Already, we can see that demand for data skills is being met by professionals transitioning from other roles, which may suggest that there are now multiple paths towards landing a career in data. In fact, 79 percent of data respondents did not begin their career in the field, and 65 percent have been working in that field for five years or less.

Data professionals are new to the industry

So, what is the difference between a Data Scientist and a Data Analyst? Here are some of the things we found:

Data Scientists Use Python (and More)

When it came to what technology data professionals were using, Excel emerged as the most widely used tool in the Digital Skills Survey, at close to 81 percent. This was followed by SQL, Python, and Tableau.

Excel most widely used tool for data professionals

Excel’s presence at the top of the list was somewhat surprising, so we dug a bit deeper to see how these responses were broken down by job title. We looked at the five major categories of respondent roles (Data Analyst, Business Analyst, Data Scientist, Researcher, Data Analytics Manager) to see the distribution of tools they used. We found that Data Scientists relied much less on Excel. Fittingly, respondents with this job title were the only ones to cite the programming language Python as their most frequently used tool. Their responses also included a much wider range of secondary tools, including SQL and Tableau. You can learn how to use tools like these as part of BrainStation’s comprehensive Data Science curriculum

As mentioned above, the Data Scientist job title traditionally implied a more senior level of experience and training, and these survey findings would seem to back this up; additional knowledge and skills would provide more exposure to a programming language like Python, as well as any additional relevant technology.

Data Analysts Optimize; Data Scientists Develop

Most data respondents in the digital skills survey said they spent the bulk of their time wrangling data and cleaning it up. The primary use of data, meanwhile, was devoted mostly to the optimization of existing platforms and products, as well as the development of new ideas, products, and services.

When we broke this down by the major job titles, another difference emerged between Data Analysts and Scientists: The majority of Business Analyst and Data Analyst respondents tend to focus more on optimizing existing platforms and products. Data Scientists, on the other hand, primarily work on developing new ideas, products, and services.

The difference here may again be explained by experience and knowledge levels, as more senior Data Scientists would likely be more involved in higher level, strategic planning and development.

Neither are Working With AI (Yet)

Where these two job titles unite, is in their expectations for the future. 77 percent of data respondents say they don’t work with artificial intelligence (AI), which may be surprising, given the attention AI has received (even on this blog). It may be, though, that since data respondents are more familiar with AI, they are more hesitant to use the term than say, Marketers.

Data professionals expect machine learning to have an impact

However, data respondents did feel that Machine Learning and AI would have the most impact on the next five to 10 years, with blockchain and internet-of-things technology coming in third and fourth. If this turns out to be true, it looks like this fast-evolving field will continue to change.

Create a more data-driven career with BrainStation’s Data Science Certificate Courses and Diploma Program.